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The method of numerical simulation of a catalytic system dynamics with lumped parameters is 
reported. Appropriate balance equations have been derived and suitable calculation procedures 
are discussed. Numerical example of simulation of the catalytic methanol dehydration dynamics 
is presented and calculated relaxation curves are compared with experimental data obtained 
earlier. 

In recent years, nonstationary kinetic studies have attracted increasing attention. In these studies, 
dynamic response of a laboratory reactor to defined disturbance of the steady state has been 
examined l . Numerical simulation of dynamic behaviour makes it possible to evaluate informa­
tion wealth of planned experiments and to confront calculated responses with experimental data. 
The frequently used types of laboratory reactors are a differential reactor (that gives rapid in­
formation) and an ideally mixed reactior (that enables to make experiments over broad range 
of conversions). Balance equations of both types are the same and thus the same calculation 
procedures can be used in both cases. The problem of simulation represents the solution of sets 
of ordinary differential (balance) equations that describe the dynamics of the catalytic system 
modelled. 

The aim of this work was to derive generally the sets of appropriate balance 
equations and to discuss applicable calculation procedures. Furthermore, numerical 
example of calculation of the methanol dehydration dynamics (the response of a labo­
ratory reactor to jump chapge in inlet composition) will be reported and its comparison 
with experimental dataZ reported earlier will be performed. 

Balance Equations 

In the reactor represented schematically in Fig. 1, there proceeds only one reaction 
between p reaction components Ai that involves k elementary steps 

p 

I aijAi = 0, j = 1, ... , k . (1) 
i=1 

The stoichiometric coefficient of components Ai in the j-th step, aij' is POSItIve 
for products ar:d negative for reactants in the j-th elementary step (an eventual 
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Numerical Simulation of a Catalytic Reaction Dynamics 171 

inert has this coefficient equal to zero). Let us suppose that P component reaction 
system consists of n gaseous components (including an inert) and of (p- n) com­
ponents on catalyst surface (including free active centres). The rate of formation 
[]fj of any component Aj is described by Eq. (2) 

k 

9l j = I aijrj' i = 1, ... , P , 
j=l 

where rj is the rate of the j-th elementary step. 

(2) 

The balance of reaction components in the bulk phase of the reactor gives n dif­
ferential equations for time changes of partial pressures Pi (Eq. 3) 

(VjRT) (dp)dt) = F~c? - F,c j + W9l i , i = 1, ... , n , (3) 

where V is the free volume of the reactor and c? and ci are the molar concentrations 
of components Ai in the reactor inlet and reactor outlet, resp., for which the rela­
tion for the total molar concentration c has the foIIowing form 

n n 

I c? = I C j = C. (4) 
i= 1 i= 1 

Taking into account the relation for the total pressure P 

n 

I Pi = P = const . (5) 
i= 1 

only (n-l) equations (3) are independent. 
Balance equations (3) contain the flew on the reactor outlet F, which can be 

determined only with difficulty. ThIs quantity can be expresEed by the volume flow 
on the reactor inlet F~. 

F."P 

FIG. 1 
P, T, w,v 

Scheme of the reactor 

- ~-~ -- ~--------- ~ --~------
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172 Klusa~k: 

With respect to the validity of Eqs (4) and (5), the summation of n equations (3) 
leads to the expression 

n n 

(V/RT) L (dp;jdt) = F~c - Fvc + W L ali (6) 
i= 1 i = 1 

from which 
n 

Fv = F~ + (W/c) L ~i • (7) 
i= 1 

Combination of Eqs (3) with Eq. (7) gives n balance equations for gaseous compo­
nents Ai in the form 

n 

(V/RT)(dpi/dt) = F~(c? - ci) - W[(c?/c) L ali - ali] (8) 
i= 1 

i = 1, ... , n 

of which only (n-I) ones are again independent. Therefore, one of differential 
equations (8) can be replaced (e.g. that for component An) by the equation 

n-l 

(dPn/dt) = - L (dp;jdt) . (9) 
i= 1 

Balance of the components adsorbed on catalyst surface (and of free centres) 
provides another (p - n) balance equations for time changes of surface concentra­
tions qj 

(dq;jdt) = :!li' i = n + 1, ... , p. 

As it holds that 
p 

L qi = L, (11) 
i=n+ 1 

where L is the total concentration of active centres, only (p - n -1) equations (10) 
are independent and one of them (e.g. that for component Ap) can be replaced by the 
equation 

p-l 

(dqp/dt) = (dL/dt) - L (dq;jdt) , (12) 
i=n+ 1 

where (dL/dt) stands for the possible time change of the total concentration of active 
centres (e.g. irreversible occupation of the centres by the product or formation 
of further active sites, etc.). If the total concentration of active centres on catalyst 
surface remains constant, (dL/dt) equals to zero. 
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The set of balance equations is complemented by initial conditions 

Pi = Pi(O) , i = 1, ... , n 

for t = ° (13) 

qi = qi(O) , i = n + 1, ... , p. 

The value of I;- can be obtained from independent measurements (e.g. from measure­
ments of surface acidity in the case of acidic catalyst or merely from adsorption 
data). The relations for rate of formation (9l j ; i = 1, ... , p) follow from model 
concepts about a given reaction. The other quantities in the set of balance equations 
(8)-(10), (I2) can either be determined directly or they result from numerical simula­
tion (Pi' qJ The solution of the H:t at fixed time interval gives time profiles of partial 
pressures of reaction components on the reactor outlet that can be compared with ex­
perimental data, and time prcfiles of the concentrations of reaction components 
on the catalyst surface. 

Solution of Set of Balance Equations 

The set of balance equations (8)- (10), (I 2) describing the catalytic system dynamics 
has to be solved numerically. Classical explicit methods of numerical integration, 
represented e.g. by Runge-Kutt procedures, usually fail to give reasonable results. 
The reason is a significant "stiff" character of the Eet (8) - (10), (12) which is cauEed 
by very different (by several orders of magnitude) rate constants of single elementary 
steps. In recent years, numerical calculation method for solution of these problems 
went through rapid developmene - 5. On testing these methods, the most generally 
applicable procedures have turned out to be a semi implicit method reported by Mi­
chelsen 6 and a nonlinear explicit method proposed by Kubicek 7 • 

Numerical Example 

F or purposes of illustration, we present here the numerical simulation of the catalytic 
methanol dehydration on an ion exchanger catalyst at 140°C and atmospheric pres­
sure 

(A) 

that was studied also experimentally2. 

From kinetic results obtained by Thanh, Setinek and Beninek8 it folJows that the 
reaction (A) proceeds via the follOWing sequence of elementary steps 

kl 
A + 2 S == XS + YS 

kl' 
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A + 2 S 
k, 

XS + YS --~ -.----
k, , 

(8) 

XS YS 
kz 

Z*S + S + ------40 

Z*S + XS + YS ------40 E + WS + 2 S 

k3 
WS kY W + S. 

Methanol (A) adsorbs on active centres (S) with dissociation to nonequivalent frag­
ments (XS, YS). The rate determining step is an irreversible surface reaction which 
involves initial formation of an active intermediate (Z*S) which reacts in very rapid 
and irrever~ible step with another two fragments to produce nonadsorbed dimethyl 
ether (E) and adscrbedwater (WS). The final step is desorption of water (W). The reac­
tion mixture can contain also an inert (N2 ). 

Let us designate gaseous components as 

As folows from the set (8), concentrations of fragments XS and YS on catalyst 
surface must be identical (they are symetrically formed and consumed) and thus 
alw they can be balanced as one comporent ("adwrbed methanol"). The balance 
of adsorbed active intenr..ediate product Z"'S has r:ct to be made, as its concentration 
on catalyst surface is essentially nearly zero durirg all the process. After introduction 
further symbols 

expressions (8) for the rate of formation ~i have the following form 

~l = 2(k~q; - k1PlqD 

~2 = k1q; 

fH3 = k 3q6 - k~P3q7 

fH4 = 0 

fHs = 4[klPlq~ - q;(kl + k~)] 

~6 = k 2q; + k~P3q7 - k 3q6 

~7 = 4(k;q; - k1PlqD + 3k2 q; + k 3 q6 - k~P3q7 . 

(14) 
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Provided that (dL/dt) = 0, balance equations (3), (9), (10), and (12) can be formula­
ted as 

(V/RT) (dpt/dt) = (F~c7 - Fvc t ) + W~t 

(V/RT) (dp2/dt) = (F~cg - FvC2) + W312 

(V/RT) (dp3/dt) = (F~c~ - FvC3) + W~3 

3 

(dp4/dt) = - L (dp;jdt) 
j = 1 

(dq5/dt) = ~5 

(dq6/dt) = ~6 

6 

(dqJ/dt) = - L (dq;jdt). 
;=5 

(15) 

Balance equations for gaseous components include the total volume flow on the 
reactor outlet, F" which can be expressed according to Eq. (7) by the relation 

3 

Fy = F~ + (W/c) L 3l;. (16) 
; = t 

By substitution for Fy according to Eq. (16), the first three equations of the set (I5) 
acquire the form which is formally identical with Eq. (8). 

The total concentration of active centres L = 520 Jlmol/g and rate constants 
of elementary steps (B) 

kl = 1·48 . 10- 3 g/Jlmol kPa s 

k2 = 1·0 g/Jlmol s 

k2 = 1'49.10- 3 g/Jlmol s 

k3 = 1·0 I/s 

k~ = 3'14. 1O- 2 1/kPa s 

were obtained from stationary kinetic data2 • 
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The set of balance equations (15) has been solved by using a nonlinear explicit 
methcd proposed by Kubicek 7 for the case where at time t = 0 the composition 
of the inlet flow to the reactor "as changed by jump from pure nitrogen (p? = p~ = 

= p~ = 0; p~ = 100 kPa) to pure methanol (p~ = 100 kPa; p~ = p~ = p~ = 0). 
The initial conditions for gaseous components bve the form (17) 
for t = 0 

and for surface concentrations 
for t = 0 

PI = pz = P3 = 0 

P4 = 100 kPa 

qs = q6 = 0 

q7 = 520 jlmol!g . 

(17) 

(18) 

Calculated response of the ideally mixed flow catalytic reactor to the above inlet 
concentration jump is represented graphically in Fig. 2a,b. The values of the para­
meters used for numerical simultation are as follows 

T = 413 K, V = 4·5 cm3 , F~ = 0·2 cm3Js, W = 1 g . 

10Or--,---,---,---,---,---, 

a 
p,kPo 

b 

300 s 60n 

FIG. 2 

The time profiles of partial pressures (a) 
and ~urface concentrations (b) after jump 
change in the compo~ition of the input from 
pure nitrogen to pure methanol. Calculated 
partial pressures: 1 methanol, 2 dimethyl 
ether, 3 water, 4 nitrogen; experimental 
points2 • methanol, 0 dimethyl ether, ® wa­
ter, () nitrogen. Surface concentrations: 
5 methanol, 6 water, 7 free centres 
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Immediately after nitrogen has been replaced by methanol in the inlet flow to the 
reactor, the partial pressure of dimethyl ether rapidly increases (Fig. 2a). The time 
course of the not adsorbing dimethyl ether provides direct information about the 
rate of consumption of methanol by the reaction. Ini~ially, the adsorbed water 
formed by the reaction blocks only small portion of active centres (Fig. 2b), and the 
rate of methanol consumption increases. After attaining maximum (approximately 
in 60 s), the rate of methanol consumption (and thus also partial pressure of dimethyl 
ether) begins to decrease due to the increasing coverage of the catalyst surface 
by water. In about ten minutes, the catalytic system reaches new steady state. 

For comparison, Fig. 2a shows also experimental points2 that represent the 
composition of the reaction mixture in the ideally mixed reactor during relaxation 
period. The agreement between experiment and calculation can be regarded as good 
and the proposed mechanism of dehydration of methanol (B) as adequate to the 
real process that is taking place on catalyst surface. 

DISCUSSION 

In the present work we have derived the set of differential balance equations that 
describe the dynamics of a simple catalytic system in kinetic region. Numerical 
solution by classical integration procedures (e.g. of Runge-Kutte type) has led in so­
me cases to difficulties not easy to overcome, that were caused by very different rate 
constants of single elementary steps of catalytic reaction (so called stiff character 
of the system). On testing a series of integration procedures, the most generally 
applicable has turned out to be a semi empirical method by Michelsen 6 and a non­
linear explicit method proposed by Kubicek 7 • 

In this work we present also an example of formulation of balance equations and 
the results of numerical simulation for the response of the ideally mixed laboratory 
reactor to the jump change in composition of the inlet flow. The applicability of the 
kinetic model tested is documented by confrontation with the experimental data 
obtained earJier2. 

Similar simulation calculations can be performed also for other proposed mechan­
isms of the reaction (A) and for another types of steady state disturbances (e.g. 
concentration pulse and others). Also the value of WIF~ can be changed, making 
it possible to achieve different conversions. Characteristic parts of the responses 
(e.g. maximum) can be confronted with experimental data, and by this way, the 
validity of suggested reaction mechanisms can be verified. Information obtained 
from numerically simulated dynamics of catalytic reaction can thus contribute 
significantly to the rational planning of experiments and to the reduction of their 
number. 
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