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The method of numerical simulation of a catalytic system dynamics with lumped parameters is
reported. Appropriate balance equations have been derived and suitable calculation procedures
are discussed. Numerical example of simulation of the catalytic methanol dehydration dynamics
is presented and calculated relaxation curves are compared with experimental data obtained
earlier.

In recent years, nonstationary kinetic studies have attracted increasing attention. In these studies,
dynamic response of a laboratory reactor to defined disturbance of the steady state has been
examined!. Numerical simulation of dynamic behaviour makes it possible to evaluate informa-
tion wealth of planned experiments and to confront calculated responses with experimental data.
The frequently used types of laboratory reactors are a differential reactor (that gives rapid in-
formation) and an ideally mixed reactior (that enables to make experiments over broad range
of conversions). Balance equations of both types are the same and thus the same calculation
procedures can be used in both cases. The problem of simulation represents the solution of sets
of ordinary differential (balance) equations that describe the dynamics of the catalytic system
modelled.

The aim of this work was to derive generally the sets of appropriate balance
equations and to discuss applicable calculation procedures. Furthermore, numerical
example of calculation of the methanol dehydration dynamics (the response of a labo-
ratory reactor to jump chargeininlet composition) will be reported and its comparison
with experimental data? reported earlier will be performed.

Balance Equations

In the reactor represented schematically in Fig. 1, there proceeds only one reaction
between p reaction components A; that involves k elementary steps

p
.Zaiin=0, j=1,... k. (1

i=1

The stoichiometric coefficient of components A; in the j-th step, a;;, is positive
for products ard negative for reactants in the j-th elementary step (an eventual
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Numerical Simulation of a Catalytic Reaction Dynamics 171

inert has this coefficient equal to zero). Let us suppose that p component reaction
system consists of n gaseous components (including an inert) and of (p—n) com-
ponents on catalyst surface (including free active centres). The rate of formation
#; of any component A, is described by Eq. (2)

«%i=zaijrj, i=1,...,p, (2)
1

where r; is the rate of the j-th elementary step.
The balance of reaction components in the bulk phase of the reactor gives n dif-
ferential equations for time changes of partial pressures p; (Eq. 3)

(VIRT)(dp;/dt) = Fdc} — Fye, + W, i=1,...,n, 3
where V is the free volume of the reactor and ¢ and c; are the molar concentrations

of components A; in the reactor inlet and reactor outlet, resp., for which the rela-
tion for the total molar concentration ¢ has the following form

Zc?=':\:ci=c. )

Y p; = P = const. %)

only (n—1) equations (3) are independent.

Balance equations (3) contain the flcw on the reactor outlet F, which can be
determined only with difficulty. This quantity can be expressed by the volume flow
on the reactor inlet F?.

R, P P
c?,pe Ciihi

RT, WV
FiG. 1

Scheme of the reactor
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With respect to the validity of Egs (4) and (5), the summation of n equations (3)
leads to the expression

(V/RT);n (dpi/dt) = Fc — F.c + Wﬁé R, (6)
from which
F,=F) + (W/c)i?/?i. (7)

i=1

Combination of Eqs (3) with Eq. (7) gives n balance equations for gaseous compo-
nents A; in the form

(VIRT) (@pifde) = FI(E = ) = W)Y #, = #1] @

of which only (n—1) ones are again independent. Therefore, one of differential
equations (8) can be replaced (e.g. that for component A,) by the equation

(dpafa) = = T (dpdr). ©)

Balance of the components adsorbed on catalyst surface (and of free centres)
provides another (p—n) balance equations for time changes of surface concentra-
tions g,

(dqfdi) =&, i=n+1,..,p. (10)

As it holds that

Y g=L, (11)

i=n+1

where L is the total concentration of active centres, only (p—n—1) equations (10)
arc independent and one of them (e.g. that for component A) can be replaced by the

cquation
p—1

(dgp/d) = (dLjdr) — 3, (dgi/d1), (12)

i=n+

where (dL/dt) stands for the possible time change of the total concentration of active
centres (e.g. irreversible occupation of the centres by the product or formation
of further active sites, etc.). If the total concentration of active centres on catalyst
surface remains constant, (dL/dt) equals to zero.
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The set of balance equations is complemented by initial conditions

pi=p0), i=1,..,n
fort=0 (13
qi = ql(O)’ l= n + 1,...,p.

The value of L can be obtained from independent measurements (e.g. from measure-
ments of surface acidity in the case of acidic catalyst or merely from adsorption
data). The relations for rate of formation (%i; i=1,...,p) follow from model
concepts about a given reaction. The other quantities in the set of balance equations
(8)—(10), (12) can either be determined directly or they result from numerical simula-
tion (p;, q;). The solution of the set at fixed time interval gives time profiles of partial
pressures of reaction components on the reactor outlet that can be compared with ex-
perimental data, and time prcfiles of the concentrations of reaction components
on the catalyst surface.

Solution of Set of Balance Equations

The set of balance equations (8)—(10), (12) describing the catalytic system dynamics
has to be solved numerically. Classical explicit methods of numerical integration,
represented e.g. by Runge-Kutt procedures, usually fail to give reasonable results.
The reason is a significant ““stiff” character of the set (8)—(10), (12) which is caused
by very different (by several orders of magnitude) rate constants of single elementary
steps. In recent years, numerical calculation method for solution of these problems
went through rapid development®~5. On testing these methods, the most generally
applicable procedures have turned out to be a semiimplicit method reported by Mi-
chelsen® and a nonlinear explicit method proposed by Kubicek”.

Numerical Example

For purposes of illustration, we present here the numerical simulation of the catalytic
methanol dehydration on an ion exchanger catalyst at 140°C and atmospheric pres-
sure

2CH,0H - (CH,;),0 + H,0 (4)

that was studied also experimentally?.
From kinetic results obtained by Thanh, Setinek and Beranek® it follows that the
reaction (A4) proceeds via the following sequence of elementary steps

A +25 == XS + Y8

1
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ki

A+ 2S == XS + YS (B)

ki’

/

k2

XS+ YS — Z*S + S

Z*S + XS + YS —— E 4+ WS + 28

k3

WS —— W + S.

K3’
Methanol (A) adsorbs on active centres (S) with dissociation to nonequivalent frag-
ments (XS, YS). The rate determining step is an irreversible surface reaction which
involves initial formation of an active intermediate (Z*S) which reacts in very rapid
and irrever<ible step with another two fragments to produce nonadsorbed dimethyl
ether (E) and adscrbedwater (WS). The final step is desorption of water (W). The reac-
tion mixture can contain also an inert (N,).

Let us designate gaseous components as
A=A ; E=A,; W=A;; N,=A,.

As folows from the set (B), concentrations of fragments XS and YS on catalyst
surface must be identical (they are symetrically formed and consumed) and thus
also they can be balanced as one comporent (,,adsorbed methanol“). The balance
of adsorbed active intermediate product Z*S has rct to be made, as its concentration
on catalyst surface is essentially nearly zero durirg all the process. After introduction
further symbols

XS=A;; YS=A,; WS=A,; S=A,
expressions (8) for the rate of formation #; have the following form

R, = z(klnqzs’ - klplqg)

R, = qug
Ry = kiqe — k3p3qs (14)
-.%4 = 0

Rs = 4[k,pya5 — qi(k, + k)]
Re = k,q? + k3p3q; — kiqe
Ry = 4kiq} — kyp,q3) + 3koq5 + kiqe — kipaqs .
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Provided that (dL/dr) = 0, balance equations (3), (9), (10), and (12) can be formula-
ted as

(V/RT) (dp,/dt) = (F\?C(l) — Fuey) + W2,
(VIRT) (dp,[dt) = (F2§ — Foc,) + WA,

(VIRT)(dps[dt) = (FJc3 — Fyc3) + Wk, (15)
(dpafdr) = —ii(dp;/dt)

(dgs/dt) = %5

(dge/dt) = R
(dg,/dt) = — és(dqi/dt)'

Balance equations for gaseous components include the total volume flow on the
reactor outlet, F,, which can be expressed according to Eq. (7) by the relation

F,=F) + (W/c)i R; . (16)

i=1
By substitution for F, according to Eq. (16), the first three equations of the set (I5)

acquire the form which is formally identical with Eq. (8).

The total concentration of active centres L= 520 pmol/g and rate constants
of elementary steps (B)

ky = 1-48 .1073 g/umol kPa s

ky =10 g/umol s
k, = 1-49 . 1072 g/umol s
ky =10 1/s

ky = 314.10721kPas

were obtained from stationary kinetic data?.
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The set of balance equations (15) has been solved by using a nonlinear explicit
methcd proposed by Kubigek” for the case where at time t = 0 the composition
of the inlet flow to the reactor was changed by jump from pure nitrogen (p$ = Py =
= p3 = 0; pl = 100kPa) to pure methanol (p} = 100kPa; p = p3 = pg = 0).
The initial conditions for gaseous components Fave the form (17)
fort =0

Py =pr=p3=0 (17)
ps = 100 kPa

ard for surface concentrations
fort =0

45 = g6 =0 (18)
g7 = 520 pmol/g .
Calculated response of the ideally mixed flow catalytic reactor to the above inlet

concentration jump is represented graphically in Fig. 2a,b. The values of the para-
meters used for numerical simultation are as follows

T=413K, V=45cm®, F}=02cm’s, W=1g.

100 T T T T T
a
P,IKPCJ -
60H R ~
2
3 8
7
0 _— 4 e - 1 i
T T T T T
5 FiG. 2
04 . The time profiles of partial pressures (a)
g } and surface concentrations (b) after jump
ramoligk \ . change in the composition of the input from
pure nitrogen to pure methanol. Calculated
02- 6, . partial pressures: 1 methanol, 2 dimethyl
ether, 3 water, 4 nitrogen; experimental
'/ s . points?> @ methano!, O dimethyl ether, ® wa-
) ) ) ] | ter, © nitrogen. Surface concentrations:
0 100 300 600 5 methanol, 6 water, 7 free centres
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Immediately after nitrogen has been replaced by methanol in the inlet flow to the
reactor, the partial pressure of dimethyl ether rapidly increases (Fig. 2a). The time
course of the not adsorbing dimethyl ether provides direct information about the
rate of consumption of methanol by the reaction. Iniiially, the adsorbed water
formed by the reaction blocks only small portion of active centres (Fig. 2b), ard the
rate of methanol consumption increases. After attaining maximum (approximately
in 60 s), the rate of methanol consumption (and thus also partial pressure of dimethyl
ether) begins to decrease due to the increasing coverage of the catalyst surface
by water. In about ten minutes, the catalytic system reaches new steady state.

For comparison, Fig. 2a shows also experimental points? that represent the
composition of the reaction mixture in the ideally mixed reactor during relaxation
period. The agreement between experiment and calculation can be regarded as good
and the proposed mechanism of dehydration of methanol (B) as adequate to the
real process that is taking place on catalyst surface.

DISCUSSION

In the present work we have derived the set of differential balance equations that
describe the dynamics of a simple catalytic system in kinetic region. Numerical
solution by classical integration procedures (e.g. of Runge-Kutte type) has led in so-
me cases to difficulties not easy to overcome, that were caused by very different rate
constants of single elementary steps of catalytic reaction (so called stiff character
of the system). On testing a series of integration prccedures, the most generally
applicable bas turned out to be a semiempirical methcd by Michelsen® and a non-
linear explicit method proposed by Kubicek”.

In this work we present also an example of fcrmulation of balance equations and
the results of numerical simulation for the response of the ideally mixed laboratory
reactor to the jump change in composition of the inlet flow. The applicability of the
kinetic model tested is documented by confrontation with the experimental data
obtained earlier?.

Similar simulation calculations can be performed also for other proposed mechan-
isms of the reaction (4) and for another types of steady state disturbances (e.g.
concentration pulse and others). Also the value of W/F{ can be changed, making
it possible to achieve different conversions. Characteristic parts of the responses
(e.g. maximum) can be confronted with experimental data, and by this way, the
validity of suggested reaction mechanisms can be verified. Information obtained
from numerically simulated dynamics of catalytic reaction can thus contribute
significantly to the rational planning of experiments and to the reduction of their
number.
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